
Digital Object Identifier (DOI) 10.1140/epjc/s2002-01089-x
Eur. Phys. J. C 27, 101–113 (2003) THE EUROPEAN

PHYSICAL JOURNAL C

On the triple-Pomeron vertex in perturbative QCD

J. Bartels1, M.G. Ryskin2, G.P. Vacca3

1 II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germanya

2 St. Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russiab
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Abstract. We estimate the size of the triple-pomeron vertex in perturbative QCD and compare with the
phenomenological value extracted from Regge fits to the experimental data. For simplicity, the results of
the QCD analysis are taken in the large-Nc limit. We find that the perturbative triple-pomeron coupling is
of the same order of magnitude as the observed one. We also estimate the size of the pomeron self-energy
and its contribution to the renormalization of the pomeron intercept. The effect is very small, in agreement
with previous non-perturbative estimates.

1 Introduction

The Regge description of hadronic high energy scattering
processes contains a few fundamental parameters which
are of a non-perturbative nature. Their values have been
extracted from the analysis of a large variety of experi-
mental data, and, so far, there exist no calculations within
QCD which would allow a comparison of theory and ex-
periment. Prominent examples are the pomeron intercept
αP(0) ≈ 1.08 and the pomeron slope α′

P ≈ 0.25 GeV−2,
seen in the total cross section and in elastic scattering, and
the triple-pomeron coupling g3P, defined and measured in
high mass diffraction.

Whereas the former two parameters refer to the (ef-
fective) pomeron seen at present energies, it is widely be-
lieved that the latter one provides information on the ori-
gin of the pomeron: a pomeron with intercept exactly at 1
would exhibit features that are typical for systems near a
phase transition point [3,4]. In such a situation the triple-
pomeron vertex which describes the splitting of a single
pomeron into two pomerons then provides the starting
point for calculating correlation functions, critical indices
etc. For example, using a field theoretic description of the
pomeron, the value of the triple-pomeron coupling deter-
mines the size of the self-energy, its renormalization of the
intercept etc. In reality, the intercept is close to unity (but
not exactly at 1), so it is likely that, at present day ener-
gies, we are in the vicinity of a phase transition, and the
triple-pomeron vertex plays a fundamental role.
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In perturbative QCD, the pomeron is approximated by
the BFKL calculation [1] (in LO and, more recently, also
in NLO [2]). However, the values for pomeron intercept
and slope are not very close to the observed hadronic val-
ues; moreover, the BFKL approximation can be justified
only for scattering processes in which the scattering ob-
jects have a small transverse extension (γ∗–γ∗ scattering,
or onium–onium scattering). As to the pomeron slope, for
t �= 0, the BFKL amplitude predicts a small value, whereas
at t = 0 the t-slope is singular, reflecting thus the long dis-
tance behavior of the perturbative massless gluons. The
next parameter, the perturbative triple-pomeron vertex,
has first been calculated in [5,6], starting from the high
energy behavior of QCD Feynman diagrams. Later on, in-
dependent derivations have been performed, within Feyn-
man diagrams [7,8], using a Wilson line approach [9] and
within the QCD dipole approach [10,11]. As far as the nu-
merical computation of this perturbative coupling and its
comparison with the experimental hadronic vertex is con-
cerned, an important step has been done in [12,13]: the
analytic expression derived from the underlying Feynman
diagrams contains conformal integrals which have been
computed in [12,13]. These results, however, do not yet
allow for a direct comparison with the experimental data:
as it was the case already for the BFKL approximation
in elastic scattering at t = 0, also the perturbative triple-
pomeron vertex has a singularity at zero momentum trans-
fer. Any numerical estimate, therefore, will depend upon
the way in which this singular behavior is treated.

There is no doubt that perturbative QCD cannot be
used in hadron–hadron small-angle scattering. Neverthe-
less, the analysis of perturbation theory in this high en-
ergy limit provides the first step towards the “real” theory,
and it is important to see, “how far away from reality” we
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are in pQCD. It is the purpose of this paper to attempt
a numerical estimate of the perturbative triple-pomeron
vertex and to compare with the hadronic value. We start
from the Feynman diagram analysis of [5,6], and we make
use of the numerical values obtained in [12,13]. For refer-
ence we use the cross section formula for diffraction in the
triple Regge region: we derive a value for the perturbative
triple-pomeron vertex which can be compared to the mea-
sured hadronic value. We also estimate the self-energy of
the BFKL pomeron. Some of our results differ from earlier
estimates contained in the literature [12,14,15].

When trying to compare BFKL predictions with the
pomeron parameters measured in hadron–hadron scatter-
ing, we will face a few difficulties of general nature. First,
hadron–hadron scattering, to a very good approximation,
has been parameterized by a simple Regge pole in the
complex angular momentum plane; the leading BFKL-
singularity, on the other hand, is a fixed cut which leads,
in addition to the Regge exponents sα, to logarithms of
the energy. Furthermore, BFKL scattering amplitudes are
slightly singular when the momentum transfer t is taken
to zero; this singularity reflects the 1/k2-singularity of the
zero mass gluon propagator in perturbative QCD. Non-
perturbative effects, therefore, are expected to be par-
ticularly strong near t = 0, and a comparison between
perturbative pomeron parameters and the measured non-
perturbative values looks more promising in the region of
non-zero t-values.

Our paper is organized as follows. In Sect. 2 we briefly
review, for comparison, the perturbative BFKL pomeron
in elastic scattering. In Sect. 3 we turn to the triple Regge
region of diffraction and define what we mean by a “triple-
pomeron vertex” in perturbative QCD. Section 4 deals
with the self-energy of the BFKL pomeron. The numeri-
cal evaluation will be done in Sect. 5. In the final section
we give a summary and a few general comments. Some
technical details are put into two small appendices.

2 Elastic scattering

In order to find the correct normalization of the triple-
pomeron vertex we have to start from elastic 2 → 2 scat-
tering. Let us write down the Regge ansatz for an elastic
2 → 2 scattering process. For a pomeron pole in the com-
plex angular momentum plane the elastic amplitude is

Ael = −e−i(π/2)α(t)g2
Ns

(
s

s0

)α(t)−1

, (1)

the elastic cross section has the form

dσ
dt

=
1

16π
g4
N

(
s

s0

)2α(t)−2

, (2)

and the total cross section is

σtot = g2
N

(
s

s0

)α(0)−1

. (3)

a b

Fig. 1a,b. Elastic process

In the following we want to compare these expressions
with the ones obtained from perturbative QCD in the
Regge limit. In particular, we have to relate the residue
functions gN to impact factors which naturally arise in a
perturbative analysis. For reasons which will become clear
soon, we will have to define forward and non-forward cou-
pling functions, gF and GNF, respectively.

For a 2 → 2 scattering process (e.g. gluon–gluon scat-
tering or γ∗−γ∗ scattering) a color singlet exchange leads,
in lowest order αs, to the form

ALO
el = i

s

2

∫
d2k

(2π)3
Φ1(k, q − k)

1
k2(q − k)2

Φ2(k, q − k).

(4)
All the momenta are living in the transverse plane, q
(with t = −q2) denotes the momentum transfer and s
the squared center of mass energy, respectively, and Φi is
the impact factor of the scattering particle i. As an exam-
ple, with this choice for the integration measure, the gluon
impact factor can be written as g22(π1/2)Nc/(N2

c − 1)1/2.
Summing all the contributions in the leading log s ap-

proximation leads to the BFKL pomeron exchange; in-
stead of the two gluon propagators we insert the BFKL
Green’s function. The new amplitude reads

ALL
el =

is
2

∫
d2k

(2π)3
d2k′

(2π)3
(5)

× Φ1(k, q − k)G(y|k, q − k; k′, q − k′)Φ2(k′, q − k′),

where y is the rapidity variable. Clearly, for αs → 0, when
all rungs of the BFKL resummation decouple, this expres-
sion reduces to the two-gluon exchange, which means that
we use the following normalization:

lim
αs→0

G(y|k, q − k; k′, q − k′) =
(2π)3

k2(q − k)2
δ(2)(k − k′).

(6)

2.1 The BFKL pomeron Green’s function

Eigenfunctions of the BFKL kernel, Eh,h̄, are well known
in coordinate space, where its form is dictated by confor-
mal invariance:

Eh,h̄(r10, r20) =
(

r12
r10r20

)h(
r∗
12

r∗
10r

∗
20

)h̄

, (7)
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with r10 = r1−r0 etc, h = (1+n)/2+iν, h̄ = (1−n)/2+iν
(h∗ = 1 − h̄, h̄∗ = 1 − h), and standard complex notation
for the two-dimensional vector is used on the right-hand
side. Fourier transforming (we use Lipatov’s convention
which assigns a 1/(2π)2 to any coordinate integration) to
momentum space one finds [16]

Ẽhh̄(k1,k2) =
∫

d2r1

(2π)2
d2r2

(2π)2
Eh,h̄(r1, r2)ei(k1·r1+k2·r2)

= C
(
X(k1,k2) + (−1)nX(k2,k1)

)
. (8)

The coefficient C is given by

C =
(−i)n

(4π)2
hh̄(1 − h)(1 − h̄)Γ (1 − h)Γ (1 − h̄). (9)

The functions X in complex notation can be expressed in
terms of hypergeometric functions:

X(k1,k2) =
(
k1

2

)h̄−2(
k∗
2

2

)h−2

(10)

× F

(
1 − h, 2 − h; 2;−k∗

1

k∗
2

)
F

(
1 − h̄, 2 − h̄; 2;−k2

k1

)
.

This analytic form does not contain any term of the type
δ2(k1) or δ2(k2) which are present in the coordinate repre-
sentation (7). For the impact factor of a colorless external
particle we have the well-known property, that it vanishes
for zero gluon momentum: in this case the delta-function
type contributions do not contribute. For simplicity, we
therefore will ignore them.

The pomeron intercept has the form αP(0) = 1 +
χ(ν, n) where

χ(ν, n)

= ᾱs

(
2ψ(1) − ψ

(
1 + |n|

2
+ iν

)
− ψ

(
1 + |n|

2
− iν

))
,

ᾱs =
Ncαs

π
. (11)

Let us now consider the pomeron Green’s function
in the coordinate representation [17]. Making use of the
Casimir operator properties of the Möbius group, one can
choose a representation which is more convenient to per-
form a Fourier transform. In particular, after considering
the relation

1
|ρ12|4Eh,h̄(ρ10, ρ20)

=
1
16

|∂1|2|∂2|2 1
(ρ2

12∂1∂2) × (h.c.)
Eh,h̄(ρ10, ρ20)

=
1
16

1
[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]

× |∂1|2|∂2|2Eh,h̄(ρ10, ρ20), (12)

one can write

G
(A)
2 (y|ρ1, ρ2; ρ1′ρ2′) =

∫
dµd2ρ0e

yχ(ν,n)

× Nh|∂1|2|∂2|2Eh,h̄(ρ10, ρ20)E∗
h,h̄(ρ1′0, ρ2′0), (13)

where we use the measure in the conformal weight space∫
dµ =

∑
n

∫
dν with the following normalization factor

Nh:

Nh =
(ν2 + n2/4)

[ν2 + (n− 1)2/4][ν2 + (n+ 1)2/4]
. (14)

In order to find the momentum representation we take
the Fourier transform taking into account the total mo-
mentum conservation, and we obtain

G̃
(A)
2 (y|k1,k2; k1′k2′)

= (2π)3
∫

dµeyχ(ν,n)Nh(2π)2|k1|2|q − k1|2

× Ẽh,h̄(k1, q − k1)Ẽ∗
h,h̄(k1′ , q − k1′). (15)

The (2π)3 factor in front of the integral comes from the
normalization (6); the second (2π)2 factor results from the
ρ0 integration, together with a δ(2)(k1 + k2 − k1′ − k2′)
related to the overall momentum conservation. As before,
q = k1 + k2 = k1′ + k2′ is the conserved exchanged mo-
mentum. This form of the Green’s function is amputated
on the l.h.s., i.e. for the gluons with momenta k1 and k2.
Clearly, dividing by |k1|2|q − k1|2 one arrives at the non-
amputated Green’s function G̃(NA)

2 .

2.2 Extraction of the couplings gF and gNF

Substituting in (5) the expression of the BFKL pomeron
Green’s function the elastic scattering amplitude can be
written as

ALL
el (q) =

is
2

(2π)5
∑

n

∫
dνNheyχ(ν,n)Φh

1 (q)Φh∗
2 (q), (16)

where

Φh
i (q) =

∫
d2k

(2π)3
Ẽh,h̄(k, q − k)Φi(k, q − k) (17)

are the impact factors in the conformal representation, i.e.
integrated with the BFKL pomeron eigenstates, and q is
the total transverse momenta exchanged.

For our purposes it will be sufficient to consider the
elastic scattering of identical particles. We will consider
the forward (q = 0) and the non-forward (q �= 0) case
separately. Since we are interested in the leading high en-
ergy behavior, we restrict ourselves to the conformal spin
n = 0, and we perform the integration in ν in the sad-
dle point approximation for y → ∞. We therefore need
to know the behavior of Φh

i as a function of ν. In the ap-
pendix we show that the forward (ΦF) and non-forward
(ΦNF) cases are different. Near the saddle point at ν = 0
we find

ΦF =
1
iν
Φ0F +O(ν0), ΦNF = Φ0NF +O(ν), (18)

Moreover, we have Nh = 16ν2. Next we need the expan-
sion

χ(ν, 0) = χ0−aν2, χ0 = 4 ln(2)ᾱs a = 14ζ(3)ᾱs. (19)
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In the forward case, q = 0, we obtain

AF = is8(2π)5
√

2π
[2ay]1/2Φ

2
0Feyχ0 , (20)

while in the non-forward case we have

ANF = is8(2π)5
√

2π
[2ay]3/2Φ

2
0NFeyχ0 . (21)

The transition between the non-forward and the forward
region is a delicate matter. The different large-y behavior
(y−1/2 and y−3/2) of the AF and ANF amplitudes orig-
inates from the different small-ν behavior (note, in par-
ticular, the 1/ν-singularity in the forward impact factor
(18)). As we will show in Appendix B, this 1/ν-singularity
comes from the large-r0 domain, and it reflects the per-
turbative nature of the BFKL pomeron. In particular, it is
related to the singularity of the perturbative gluon propa-
gator at zero momentum, and it must disappear after the
introduction of an appropriate infrared cutoff1. Consider-
ing the elastic scattering amplitude as a function of the
momentum transfer t, the difference in the small-ν behav-
ior of the non-forward and the forward results leads to a
cusp at t = 0: the elastic cross section (2) has a finite limit
at t = 0, but its t-derivative at t = 0 is infinite. Generally
speaking, in the BFKL approximation the point t = 0 ex-
hibits the perturbative nature most explicitly, and changes
from perturbative to non-perturbative QCD are expected
to be most dramatic in this kinematic region.

After these general remarks we are now able to extract,
by comparing (20) and (21) with (1), the Regge residue
factors gF and gNF:

gF = 23/2Φ0F(2π)5/2
(

2π
2ay

)1/4

,

gNF = 23/2Φ0NF(2π)5/2
(

2π
(2ay)3

)1/4

. (22)

The fact that these couplings have a residual y-dependence
is a consequence of the branch cut nature of the BFKL-
singularity in the angular momentum plane: (1)–(3) are
valid for Regge poles. We shall use these relations in the
next section in order to extract the triple-pomeron vertex
g3P.

3 Triple pomeron amplitude

Having collected all necessary ingredients we now turn to
the central topic of this study, the triple-pomeron vertex.
We again start from the Regge form for the diffractive
cross section in the triple Regge region, assuming Regge
pole singularities in all three exchange channels. The cross
section is obtained from the six-point amplitude (Fig. 2)

1 This was demonstrated using a simplified form of the BFKL
kernel in [18,19]

Fig. 2. Diffractive amplitude

by taking the discontinuity in the diffractive mass squared,
M2. We define

M2 dσ(diff)

dtdM2 =
1

8π2s
a6; (23)

Regge theory gives

M2 dσ(diff)

dtdM2 =
1

16π2 |e−i(π/2)α(t)|2

× g3
Ng3P

( s

M2

)2α(t)−2
(
M2

s0

)α(0)−1

=
1

16π2 |e−i(π/2)α(t)|2

× gFg
2
NFg3P

( s

M2

)2α(t)−2
(
M2

s0

)α(0)−1

, (24)

where g3P is the triple-pomeron vertex, t denotes the mo-
mentum transfer, and s0 is an energy scale. The triple-
pomeron vertex depends upon t. It will also be conve-
nient to introduce the rapidity variable Y = log (s/s0)
and the rapidity interval of the diffractive states YM =
log (M2/s0). It will be our aim to extract the counterpart
of g3P in the framework of perturbative QCD (by analyz-
ing, in the leading log approximation, the analogous high
energy limit in perturbative QCD), and to compare its
value with the empirical value in pp scattering. To this end
we consider a (hypothetical) process in the triple Regge
region, e.g. γ∗γ∗ → Xγ∗, for which the use of perturbative
QCD can be justified. Because of Regge factorization, the
value of the triple-pomeron vertex will be independent of
the external particles (e.g. γ∗ with virtuality Q2).

3.1 The QCD amplitude

Let us look at the analysis [6] of QCD Feynman diagrams
in the leading log s approximation and recapitulate the
main results. To this end we write the general integral
representation for the differential cross section of the 3 →
3 process in Fig. 2 (see (2.2) in [6])
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a b c

Fig. 3a–c. Triple interaction

M2 dσ(diff)

dtdM2 =
1

16π

∫
dω
2πi

∫
dω1

2πi

∫
dω2

2πi
(25)

×
(
M2

Q2

)ω ( s

M2

)ω1+ω2

ξω1ξ
∗
ω2
F (ω, ω1, ω2, 0, t, t),

where the ξωi are signature factors.
The differential cross section (25) can be represented

by diagrams built from reggeized gluons. The set of dia-
grams which is of particular interest for us is illustrated
in Fig. 3a: ellipses denote impact factors, circles the two-
gluon BFKL Green’s function, and the triangle the 2 → 4
gluon vertex. The shaded box denotes the evolution of
the four-gluon state, mediated by the sum over all pair-
wise interactions between the four reggeized gluons. The
last interaction (in Fig. 3a: the lowest one) has to con-
nect one of the two reggeized gluons on the l.h.s. with
one of the gluons on the r.h.s. Let us briefly recapitu-
late how this result is obtained. The analysis of Feyn-
man diagrams in the high energy limit leads to gluon
amplitudes D2, D3, and D4 which satisfy a set of cou-
pled integral equations (Fig. 4). These functions are non-
amputated, i.e. they contain reggeon denominators for the
outgoing (reggeized) gluon states. Removal (amputation)
of these reggeon denominators leads to the corresponding
functions Ci (i = 2, 3, 4). For example,

D
(ω)
4 =

C
(ω)
4

ω − β1 − β2 − β3 − β4
. (26)

In order to obtain the partial wave F of the triple Regge
cross section, we attach two 2 → 2 BFKL Green’s func-
tions to the amputated function C4, one for the two out-
going gluons on the l.h.s., another one for the two gluons
on the r.h.s. In order to avoid double counting we have
to require that the last interaction inside the four-gluon
state has to connect one of the two gluons on the l.h.s.
with one of the gluons on the r.h.s. As a result, we arrive
at the following expression for the partial wave F in the
triple Regge cross section formula:

Fig. 4. Chained equations for the multi-reggeized gluon am-
plitudes [20]

F =

[
C

(ω)
4 − C

(ω)
4 ⊗ V2→2(12)

ω − β1′ − β2′ − β3 − β4

− C
(ω)
4 ⊗ V2→2(34)

ω − β1 − β2 − β3′ − β4′

]

⊗ G2→2(12, ω1)G2→2(34, ω2), (27)

where βi are the trajectories of the reggeized gluons, V2→2
is the BFKL kernel (without the gluon trajectory function,
but including its tensor color structure, here acting for the
pairs (12) and (34) which are in a color singlet state), and
G2→2 denotes the full non-forward BFKL Green’s func-
tion. A convenient way to rewrite F in terms of D4 is

F =
[
D

(ω)
4 ⊗ (ω −H4)

+ D
(ω)
4 ⊗ (V (13) + V (14) + V (23) + V (24))

]
⊗ G2→2(12, ω1)G2→2(34, ω2), (28)

where H4 is the standard BKP evolution operator for the
four-gluon state.

As the last step, one has to apply a reduction proce-
dure to the amplitudeD4. As a part of the coupled integral
equations, D4 still contains reggeizing pieces: the outgo-
ing four-gluon state may contain configurations where a
pair of two gluons is in an antisymmetric color octet con-
figuration, which satisfies the BFKL bootstrap condition
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and collapses into a single gluon. It is convenient to re-
move these configurations, i.e. to define amplitudes DI

4
which are irreducible with respect to the bootstrap prop-
erty. This reduction has been described in [6], and D4
decomposes into the two terms D4 = DR

4 + DI
4, separat-

ing the reggeizing (R) and irreducible (I) parts. In (28),
let us first consider the irreducible part, DI

4. As shown in
[6], DI

4 consists of the diagrams of Fig. 3a which we have
described before. The triangle – with two gluons entering
from above and four gluons leaving below – defines the
triple-pomeron vertex, and its structure is quite simple:

δbb′ (δa1a2δa3a4V (12, 34) + δa1a3δa2a4V (13, 24)
+ δa1a4δa2a2V (14, 23)) , (29)

where the b, b′ are the color labels of the reggeized gluons
of the ladder above the triple-pomeron vertex, ai the color
indices of the reggeized gluons inside the two lower lad-
ders (counting from left to right), and the arguments of the
function V refer to the momenta of the gluons. Below this
vertex, before the two gluons on the l.h.s. and the two glu-
ons on the r.h.s. are restricted to color singlet states and
branch into the two disjoint BFKL Green’s functions; all
pairwise interactions between the four gluons have to be
summed. However, it is easy to see that any rung between
two color singlet two-gluon states costs a suppression fac-
tor of the order 1/N2

c : in the large-Nc limit, therefore, in
Fig. 3a the interaction inside the shaded area can be ne-
glected, and we are left with the diagrams of Fig. 3b. In
(28), the factor ω − H4 cancels the evolution inside DR

4 ,
and the terms proportional to V (13) etc. drop out. In (29),
only the first term contributes to the large-Nc limit.

Before we write down the explicit expression for these
diagrams, a few words about the contribution of DR

4 . It
is convenient to go back to (26) and (27). Since DR

4 is
nothing but a BFKL ladder in which, at the lower end,
the reggeized gluons split into two (or three) elementary
gluons, it provides an extra contribution to the triple-
pomeron vertex. From the color structure of DR

4 , given
in [6], (4.3), it can be shown that this contribution is sub-
leading in 1/Nc. In conclusion, the large-Nc limit there-
fore reduces the diffractive cross section, given in [6], to
the diagrams shown in Fig. 3b which is very similar to the
“Regge pole” diagrams of Fig. 3c.

3.2 Extraction of the triple-pomeron vertex

Let us write down the analytic expression for the general-
ized six-point amplitude a6:

a6 = 2s
∫

d2q

(2π)3
d2q1′d2q2′

(2π)3
δ(2)(lα − q1′ − q2′)

× Φα(q, lα − q)G̃(A)
2 (YM |q, lα − q; q1′ , q2′)

×
∫

d2k1d2k2

(2π)3
δ(2)(lβ − k1 − k2)

d2k3d2k4

(2π)3

× δ(2)(lγ − k3 − k4)V2→4(q1′ , q2′ |k1,k2; k3,k4)

×
∫

d2k′
1

(2π)3
G̃

(NA)
2 (Y − YM |k1,k2; k1′ , lβ − k1′)

× Φβ(k1′ , lβ − k1′)

×
∫

d2k′
3

(2π)3
G̃

(NA)
2 (Y − YM |k3,k4; k3′ , lγ − k3′)

× Φγ(k3′ , lγ − k3′), (30)

where li (with l2i = −ti) are the momentum transfers
through the impact factor Φi. Later, on we will take tα = 0
and define the triple Regge cross section.

Following the procedure of the previous section, we
perform the Fourier transform for the tα-channel (last two
lines in (30)); we write a representation of δ(2)(lα − q1′ −
q2′) together with the Green’s function in the last line,
see (15), to obtain

δ(2)(lα − q1′ − q2′)G̃(A)
2 (YM |q, lα − q; q1′ , q2′)

= (2π)3
∫

dµ0eYM χ(h0)Nh0

×
∫

d2ραe−iρα·(lα−q1′ −q2′ )|q1′ |2|q2′ |2

×Ẽhα,h̄α
(q, lα − q)Ẽ∗

hα,h̄α
(q1′ , q2′). (31)

The other two t-channels with their (non-amputated)
Green’s functions and δ distribution can be rewritten in a
similar way (using an expansion in the conformal weights
hβ and hγ); the only difference is the absence of the factors
|k1′ |2|lβ − k1′ |2 and |k3′ |2|lγ − k3′ |2. Using the conformal
representation of the impact factors Φhi

i (li) for i = α, β, γ
given in (17), we obtain the following expression for (30):

a6 = 2s
∫

dµαdµβdµγeYM χ(hα)+(Y −YM )(χ(hβ)+χ(hγ))

× Nhα
Nhβ

Nhγ
Φhα

α Φ
hβ∗
β Φhγ∗

γ

∫ ∏
i=α,β,γ

d2ρi

× ei(ρβ ·lβ+ργ ·lγ−ρα·lα)
∫ 4∏

j=1

d2kjẼhβ ,h̄β
(k1,k2)

× e−iρβ ·(k1+k2)Ẽhγ ,h̄γ
(k3,k4)e−iργ ·(k3+k4)

×
(∫

d2q1′d2q2′V2→4(q1′ , q2′ |k1,k2; k3,k4)

× |q1′ |2|q2′ |2Ẽ∗
hα,h̄α

(q1′ , q2′)eiρα·(q1′+q2′ )

)
. (32)

Before we evaluate the Fourier transform of the last
line in (32), we note several simplifications. First, the
2 → 4 vertex will be simplified by the fact that the gluons
(1, 2) and (3, 4) couple to two BFKL pomerons in color sin-
glet states. This fact considerably reduces the number of
contributions coming from V2→4: only four identical con-
tributions are left. Next, we restrict ourselves to the large
Nc limit which eliminates the non-planar part of the 2 → 4
vertex. As a result of these simplifications we can write∫

d2q1′d2q2′V2→4(q1′ , q2′ |k1,k2; k3,k4)|q1′ |2|q2′ |2

× E∗
h,h̄(q1′ , q2′)



J. Bartels et al.: On the triple-Pomeron vertex in perturbative QCD 107

= C1V

∫
d2q1′d2q2′A2→3(k1,k2 + k3,k4|q1′ , q2′)

× |q1′ |2|q2′ |2Ẽ∗
h,h̄(q1′ , q2′), (33)

where the constant

C1V = 4
π3/2

32
g4 (2Nc)2√

N2
c − 1

=
π3/2

2
g4 N2

c√
N2

c − 1
≈ 23π7/2α2

sNc, (34)

follows from the choice of the normalizations we have
made for the integration measure and for the impact fac-
tors. Details are given in Appendix A. As to the color fac-
tors, we keep only the leading term in the large Nc limit.

After performing the Fourier transform of the last line
in (32) [7,8] (i.e. performing the transition ki → ρi) one
obtains for the triple-pomeron coupling2

C1V

(2π)4
δ(2)(ρ23)

|ρ14|2
|ρ12|2|ρ24|2 |∂1|2|∂2|2E∗

hα,h̄α
(ρ1α, ρ4α)

=
C1V

(2π)4
δ(2)(ρ23)16hαh̄α(1 − hα)(1 − h̄α)

× 1
|ρ12|2|ρ24|2|ρ41|2E

∗
hα,h̄α

(ρ1α, ρ4α). (35)

The Fourier transform of the remaining ki dependent part
is easily done and leads to the two factors Ehβ ,h̄β

(ρ1β , ρ2β)
and Ehγ ,h̄γ

(ρ3γ , ρ4γ).
As a result, we can write

a6 = 2sC2V

∫
dµαdµβdµγeYM χ(hα)+(Y −YM )(χ(hβ)+χ(hγ))

× Nhα
Nhβ

Nhγ
Φhα

α Φ
hβ∗
β Φhγ∗

γ 16hαh̄α(1 − hα)(1 − h̄α)

×
∫ ∏

i=α,β,γ

d2ρie
i(ρβ ·lβ+ργ ·lγ−ρα·lα)

×
∫

d2ρ1d2ρ2d2ρ4

|ρ12|2|ρ24|2|ρ41|2Ehβ ,h̄β
(ρ1β , ρ2β)Ehγ ,h̄γ

(ρ2γ , ρ4γ)

× E∗
hα,h̄α

(ρ4α, ρ1α), (36)

where C2V = C1V/(2π)4.
The integral in the last line of (36) has been calculated

explicitly in [13,12], where the conformal invariance has
been used explicitly. The result can be written in the form

Ω(1 − hα, hβ , hγ)
(
ρ

−∆αβ

αβ ρ−∆αγ
αγ ρ

−∆βγ

βγ × (h.c.)
)
, (37)

where the function Ω can be found in [13,12]. The ex-
ponents are defined for the general conformal covariant
three-point function: ∆ij = hi + hj − hk �=i,j and remem-
bering to use for the index 0 the weight (1 − hα) = h̄∗

α,
which is due to the fact that one function is complex con-
jugated. That means ∆αβ = 1 − hα + hβ − hγ , etc.

2 Comparing with an analogous expression in [12], we differ
in the Casimir operators which are not present in [12]

We shall now consider the limit lα = 0 (keeping tβ =
−l2β and tγ = −l2γ still independent from each other) and
perform the remaining ρ integrals still present in (36).
Explicitly we have to calculate

Ic =
∫

d2ραd2ρβd2ργ

(
ρ

−∆αβ

αβ ρ−∆αγ
αγ ρ

−∆βγ

βγ (h.c.)
)

× eiρβlβ+iργlγ . (38)

The integration over ρα can be done easily:∫
d2ρα

(
ρ

−∆αβ

αβ ρ−∆αγ
αγ × (h.c.)

)
= f(hα, hβ , hγ)

(
ρ
1−∆αβ−∆αγ

γβ × (h.c.)
)
, (39)

where

f(hα, hβ , hγ) = −(−1)∆αγ−∆αβ
Γ (1 −∆αβ)Γ (1 −∆αγ)
Γ (2 −∆αβ −∆αγ)

×Γ (1 − ∆̄αβ)Γ (1 − ∆̄αγ)
Γ (2 − ∆̄αβ − ∆̄αγ)

sin(π∆αβ) sin(π∆αγ)
sin(π(∆αβ +∆αγ))

= −(−1)2(hγ−hβ)Γ (hα − hβ + hγ)Γ (hα − hγ + hβ)
Γ (2hα)

×Γ (h̄α − h̄β + h̄γ)Γ (h̄α − h̄γ + h̄β)
Γ (2h̄α)

× sin(π(hα − hβ + hγ)) sin(π(hα − hγ + hβ))
sin(2πhα)

. (40)

Therefore one is left with the following integration:

Ic = (−1)∆βγ+∆̄βγf(hα, hβ , hγ) (41)

×
∫

d2ρβd2ργ

(
ρ
1−∆αβ−∆αγ−∆βγ

γβ (h.c.)
)

eiρβlβ+iργlγ .

Performing a shift in one of the integration variables, one
integration can be done to extract the momentum con-
serving δ-function:

Ic = (2π)2δ(2)(lβ + lγ)(−1)∆βγ+∆̄βγf(hα, hβ , hγ)

×
∫

d2ρ
(
ρ1−∆αβ−∆αγ−∆βγ (h.c.)

)
eiρlβ . (42)

Also the remaining integral can be done easily. Introducing
ξ = 1 −∆αβ −∆αγ −∆βγ and ξ̄ = 1 − ∆̄αβ − ∆̄αγ − ∆̄βγ ,
we have∫

d2ρρξρ∗ξ̄eiρlβ = 2πiξ̄−ξ21+ξ+ξ̄ Γ (1 + ξ̄)
Γ (−ξ) l−ξ̄−1

β l∗−ξ−1
β .

(43)
Returning to (38)we have

Ic = (2π)3δ(2)(lβ + lγ)f(hα, hβ , hγ) (44)

× (−1)∆βγ+∆̄βγ iξ̄−ξ21+ξ+ξ̄ Γ (1 + ξ̄)
Γ (−ξ) l−ξ̄−1

β l∗−ξ−1
β ,

with

ξ = 1 − ((1 − hα) + hβ − hγ) − ((1 − hα) + hγ − hβ)
− (hβ + hγ − (1 − hα))
= hα − hβ − hγ (45)
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and

ξ̄ = h̄α − h̄β − h̄γ , ξ∗ = −1 − h̄α + h̄β + h̄γ ,

ξ̄∗ = −1 − hα + hβ + hγ . (46)

Collecting all this in the formula for the amplitude a6
in (36), we obtain the result

a6 = 2sC3V

∫
dµαdµβdµγeYM χ(hα)+(Y −YM )(χ(hβ)+χ(hγ))

× Nhα
Nhβ

Nhγ
Φhα

α Φ
hβ∗
β Φhγ∗

γ

× 16hαh̄α(1 − hα)(1 − h̄α)
× Ω(1 − hα, hβ , hγ)f(hα, hβ , hγ)

× (−1)∆βγ+∆̄βγ iξ̄−ξ21+ξ+ξ̄ Γ (1 + ξ̄)
Γ (−ξ) l−ξ̄−1

β l∗−ξ−1
β . (47)

Here we have removed the δ(2)(lβ + lγ)-function. The con-
stant C3V has the form

C3V = (2π)3C2V =
C1V

2π
. (48)

Let us now consider the saddle point approximation,
assuming that both YM and Y − YM are large. Following
the standard BFKL arguments, the leading contributions
will come from the conformal weights being close the value
1/2, i.e. from conformal spin equal to zero and small ν’s.
In this region we have

hi =
1
2

+ iνi, ξ = −1
2

+ i(να − νβ − νγ), (49)

and therefore

f(hα, hβ , hγ)

≈ −1
Γ

(
1
2

)
Γ

(
1
2

)
Γ (1)

Γ

(
1
2

)
Γ

(
1
2

)
Γ (1)

11
− sin 2πiνα

≈ − iπ
2να

, (50)

(−1)∆βγ+∆̄βγ iξ̄−ξ2ξ+ξ̄ Γ (1 + ξ̄)
Γ (−ξ) l−ξ̄−1

β l∗−ξ−1
β

≈ −1 × 1
2

Γ

(
1
2

)

Γ

(
1
2

) l
−(1/2)−i(να−νβ−νγ)
β l

∗−(1/2)−i(να−νβ−νγ)
β

≈ −1
2
|lβ |−1−2i(να−νβ−νγ) (51)

Moreover, 16hα(1 − hα)h̄α(1 − h̄α) ≈ 1 and Nh ≈ 16ν2.
We note that the function f , near lα = 0, behaves in
να in the same way as the forward impact factors (18).
Therefore, with respect to the tα-channel we are facing
the same problem as discussed in the previous section.
Substituting this behavior in (47) one has

a6 ≈ 2sC3V

∫
dναdνβdνγeYM χ(hα)+(Y −YM )(χ(hβ)+χ(hγ))

× 163ν2
αν

2
βν

2
γΦ

hα
α Φ

hβ∗
β Φhγ∗

γ

× Ω

(
1
2
,
1
2
,
1
2

)
iπ

4να
|lβ |−1−2i(να−νβ−νγ)

= 2isC4V

∫
dναdνβdνγναν

2
βν

2
γ

× eYM χ(hα)+(Y −YM )(χ(hβ)+χ(hγ))Φhα
α

× Φ
hβ∗
β Φhγ∗

γ |lβ |−1−2i(να−νβ−νγ), (52)

where

C4V = 210πΩ

(
1
2
,
1
2
,
1
2

)
,

C3V = 29Ω

(
1
2
,
1
2
,
1
2

)
,

C1V = 212π7/2α2
sNcΩ

(
1
2
,
1
2
,
1
2

)
. (53)

The numerical value for

Ω

(
1
2
,
1
2
,
1
2

)

has been found in [13,12]:

Ω

(
1
2
,
1
2
,
1
2

)
= 2π7

4F3

(
1
2

)
6F5

(
1
2

)
≈ 7766.679.

(54)
The remaining part of our saddle point analysis of a6

is analogous to what has been done in Sect. 2.1: the inte-
gration over να goes with an impact factor in the forward
direction, whereas for the two integrations in νβ and νγ we
have the freedom to vary tβ and tγ : following our discus-
sion after (21) we chose to stay away from the “most dan-
gerous” points tβ = tγ = 0, i.e. we perform our compari-
son in the “safer” region tβ = tγ �= 0. Putting lβ = lα = l
and using (18) we find that the dependence in l in the
dominant contribution, as selected by the saddle points at
να = νβ = νγ = 0, is just 1/|l|. The integrals are trivially
done and lead to the result

a6 ≈ 2s
C4V

|l|

( √
2π

[2aYM ]1/2Φ0FeYM χ0

)

×
( √

2π
[2a(Y − YM )]3/2Φ0NFe(Y −YM )χ0

)2

. (55)

Using the relations in (22) for rewriting the impact factors
in terms of gF and gNF, we arrive at

a6 ≈ sgFg
2
NF
C4V

|l|
1

27/2(2π)15/2

(
2π

2aYM

)1/4

×
(

2π
[2a(Y − YM )]3

)1/2

eYM χ0e2(Y −YM )χ0 . (56)

Finally we have to relate the generalized amplitude a6
to the triple Regge cross section formula:

M2 dσ(diff)

dtdM2 =
1

8π2s
a6. (57)
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Comparing our result with (24), we are able to extract

g3P ≈ C4V

|l|
1

25/2(2π)15/2

(
2π

2aYM

)1/4

×
(

2π
[2a(Y − YM )]3

)1/2

=
1
|l|

26

(2π)4
α2

sNcΩ

(
1
2
,
1
2
,
1
2

)(
2π

2aYM

)1/4

×
(

2π
[2a(Y − YM )]3

)1/2

. (58)

We note that this expression is proportional to α1/4
s , i.e.

there is a very mild dependence on the strong coupling.
Considering αs ≈ 0.3 we get

g3P ≈ 6.5

Y
1/4
M (Y − YM )3/2

1
|l| . (59)

The strong dependence upon the momentum transfer near
l = 0, which is closely connected with the perturbative
zero mass gluon, confirms our expectation that a com-
parison between perturbative and non-perturbative Regge
parameters can be done only in the region of finite mo-
mentum transfer, and one cannot expect more than an
order-of-magnitude estimate.

Let us comment on other results of this vertex con-
tained in the literature. Within the dipole picture the
triple pomeron has been derived in [10]: an expression for
the triple-pomeron coupling can be derived from (61), but
no explicit expression or numerical number V0 has been
given in this paper. In [12] explicit expressions for the
triple-pomeron vertex can be found: our result disagrees,
both in the energy dependence and in the overall normal-
ization. The result of [14] is closest to ours, but, again,
we disagree in the overall normalization and in the energy
dependence.

4 The pomeron self-energy

As an important application of the triple-pomeron cou-
pling we estimate the size of the pomeron self-energy in-
side a 2 → 2 scattering amplitude. To this end we replace,
in the amplitude a6 of the previous section, the two im-
pact factors Φhβ

β and Φ
hγ
γ by another triple-pomeron ver-

tex V2→4 which through a BFKL pomeron and another
impact factor couples to the lower external particle. As
a modification of a6, one has to consider an additional
momentum integration over the pomeron loop, in the mo-
mentum variable lβ = lα − lγ . For simplicity we will re-
strict ourselves to the forward direction lα = 0. Denoting
by ξ′ the same combination (39) of conformal weights as
ξ, with hα being replaced by hα′ , the lβ integral can be
carried out and leads to the conservation of the conformal
weights above and below the pomeron loop:∫

d2lβ

(
l−ξ̄−1
β l∗−ξ−1

β

)(
l−ξ̄′−1
β l∗−ξ′−1

β

)∗

=
∫

d2lβ

(
l
−h̄α+h̄β+h̄γ−1
β l

∗−hα+hβ+hγ−1
β

)
×
(
l
∗hα′ −hβ−hγ

β l
h̄α′ −h̄β−h̄γ

β

)
=
∫

d2lβl
h̄α′ −h̄α−1
β l

∗hα′ −hα−1
β

=
(2π)2

2
δnαnα′ δ(να − να′). (60)

Another important ingredient to the pomeron self-energy
is the minus sign relative to the BFKL amplitude (5).

We want to evaluate this loop correction to the elas-
tic scattering amplitude, using again the saddle point ap-
proximation. Starting from the expression (52), inserting
the result (60) and performing the να′ integration, we can
write

∆ALL
el = −i

(2π)2

2
s

4(2π)4

(
C4V

16(2π)5

)2 ∫
dY1dY2

×
∫

dναΦ
hα
α ν2

αΦ
hα∗
α e(Y1+Y2)χ(να)

×
(∫

dνν2e(Y −Y1−Y2)χ(ν)
)2

, (61)

noting that the νβ and νγ integrations give identical fac-
tors. Let us also note that all the rapidity intervals must
be large enough to allow the application of the leading log
approximation. This expression can be compared with a
similar result in [12]. The remaining ν integrations give

∆ALL
el = −i

s

2

(
C4V

25(2π)6

)2

Φ2
0F

∫
dY1dY2eχ0(Y1+Y2)

×
(

2π
2a(Y1 + Y2)

)1/2

× e2χ0(Y −Y1−Y2) 2π
[2a(Y − Y1 − Y2)]3

. (62)

This result represents the one-loop self-energy correc-
tion to the BFKL approximation (20). Apart from the
fractional powers of αs in front of the rapidity factors, the
overall power of αs inside the C4V factors is α4

s : compared
to the LL BFKL approximation our expression is down by
two powers of αs, i.e. the self-energy correction belongs to
NNLO and thus is beyond the NLO corrections calculated
recently. Note, however, the exponent 2χ0 in the last line:
for large rapidity intervals Y − Y1 − Y2 this energy factor
renders the one-loop self-energy correction more impor-
tant than the NLO corrections to the BFKL kernel.

5 Numerical estimates

5.1 Triple pomeron vertex

In this final part of our study we use our analytical for-
mulae to obtain numerical estimates. We begin with the
phenomenological vertex extracted from the pp → p + X
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data in the framework of the old triple Regge analysis
[21,22] and compare with the perturbative triple-pomeron
vertex g3P.

It was observed that the t-dependence of the triple-
pomeron contribution to the diffractive dissociation cross
section is consistent with the t-behavior of the proton–
pomeron vertex square; that is M2dσ/dtdM2 ∝ g2

N(t).
Hence the t = −l2-dependence of the triple-pomeron ver-
tex g3P(t) must be small; for the t-slope of g3P we estimate
B3P < 1 GeV2. Therefore we may consider relatively large
|l| ∼ 1–2 GeV where, in the perturbative calculation, we
are away from the QCD dangerous region l = 0. In our
normalization the phenomenological analysis gives [21,22]

g3P ∼ 0.5–1 GeV−1. (63)

Note that when applying our formula (23) to experimen-
tal data and extracting a numerical value for the triple-
pomeron vertex, this vertex has to be viewed as an ef-
fective vertex, i.e. it already accounts for screening cor-
rections due to multi-pomeron cuts. So the bare vertex
may be larger by a factor of about up to 2–43 Thus, at
the experiment we “observe” a bare vertex of the order
g3P ∼ 2 GeV−1. This value corresponds to the events with
a gap size ∆Y = ln(s/M2) = Y − YM between 3 and 5.

Turning to the perturbative analysis, we first note that,
in order to justify the saddle point evaluation of our in-
tegrals, we need ∆Y > 4. This is just the region of z =
yαsNc/π > 1, where the asymptotic component of the
BFKL solution (with conformal spin n = 0) starts to ex-
ceed the lowest order two-gluon exchange contribution.
At the same time the width of the saddle point δν ∼
1/(a∆Y )2 ∼ 0.3 (for αs = 0.3) becomes sufficiently small.
Thus, if we choose YM = ∆Y = Y − YM = 4, αs = 0.3
and l = 1 GeV−1, we obtain g3P ∼ 0.6 GeV−1. It follows
from (59) and from our discussion before that this value
has large theoretical uncertainties: changes in l, Y and
YM have a stronger influence on the numerical value of
the perturbative triple-pomeron vertex than on the non-
perturbative triple-pomeron coupling. As the result of our
analysis, we therefore present the range

g3P ∼ 0.2–1.7 GeV−1, (64)

which is related to the ranges of values 3 < ∆Y < 5 and
0.5 GeV−1 < l < 2 GeV−1. Surprisingly, these numerical
value are not far from the experimental value discussed
before.

Finally, we would like to mention that this perturba-
tive value may be a little overestimated. Namely, we have
to remember that, in order to arrive at the triple Regge
cross section formula, we had to take the discontinuity of
a6 at lα = 0. In analogy with the impact factor (18), the
triple-pomeron vertex at lα has a singularity ∼ 1/ν just
at the saddle point ν = 0; as we have discussed in Sect. 2,
this singularity is a result of the massless gluon propaga-
tor, and it should disappear after the introduction of an

3 In particular, the gap survival probability within the ISR
energy domain, calculated in the formalism of [23], is equal to
S2 = 0.25–0.33

appropriate infrared cutoff. Numerically, the presence of
the 1/ν-singularity should lead to enhancement, and our
value of the perturbative triple-pomeron vertex may, in
fact, therefore be overestimated.

It is interesting to compare our result with the numer-
ical studies of the Balitsky–Kovchegov equation [9,24,25]
(BK equation). This equation includes the LO BFKL evo-
lution and accounts for the triple-pomeron coupling sum-
ming up the fan diagrams in terms of the dipole–dipole
interaction. In the recent paper [26] the begining of sat-
uration was observed at rather small Y ∼ 2–3. However
first the saturation is reached for a large size dipole where
the absorptive corrections are much stronger. This is a
dangerous region. Even without the confinement and for
a fixed αs coupling we faced here two problems:
(1) on the one hand, at small l (k in the notation of [26])
the 1/ν-singularity plays a crucial role, as was discussed
above,
(2) on the other hand, the whole approach can be justified
only for the case when the rapidity interval ∆Y occupied
by each pomeron is large enough. There is no this con-
dition in the BK equation and the pomerons can split
immediately, especially for a large size dipoles.

To avoid these problems we focus on dipoles of a
smaller size, smaller than the initial (input) size 1/k0,
taken in [26] to be 1 GeV−1. Here the absorptive effects
reveal itself at Y ∼ 4–6 (see Figs. 2,4 of [26]). This is in
agreement with our expectation. Based on the simplified
form of the first (order of g3P) fan diagram contribution,
see (23) and (24), and taking the effective perturbative
vertex g3P ∼ 0.6 GeV−1 (which was evaluated just for
∆Y ∼ 4), we found that the triple-pomeron amplitude
becomes comparable with the single-pomeron exchange at
Y ∼ 4–5; we choose l ∼ 1 GeV, gN = 10 GeV−1 (corre-
sponding to σtot

pp = 40 mb and αs = 0.2 (corresponding to
the LO BFKL ω0 = 0.56) as was done in [26]).

5.2 Renormalization of the pomeron intercept
due to the pomeron self-energy

Finally, we estimate the size of the pomeron self-energy
correction and its influence on the intercept of the pertur-
bative BFKL amplitude. In the loop amplitude (62) we
still have the integrals over the rapidities Y1, Y2, and the
dominant contribution comes from the region of small Y1,
Y2, where ∆Y = |Y − Y1 − Y2| → Y . This limit corre-
sponds to a two-pomeron exchange of eikonal type. On
the other hand, (62) was derived under the assumption
that Y1 and Y2 are large enough to justify the insertion
of BFKL pomerons between the loop and the impact fac-
tors, and we have to restrict ∆Y to a region smaller than
the total rapidity. If the total rapidity Y is much larger
than the rapidity interval occupied by the loop – for ex-
ample we could consider a loop of the finite size ∆Y with
∆Y ∼ 1/ω0 ∼ 4 – then such a “small” loop can be re-
peated many times and would play the role of the pomeron
self-energy, leading to a renormalization of the pomeron
intercept. As mentioned before, the self-energy is negative
relative to the BFKL amplitude, and the renormalization
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therefore lowers the pomeron intercept. If the absolute
value of the renormalization is close or even larger than
the “bare” intercept ω0 = α(0) − 1, one may get close
to the “critical” pomeron or even obtain the “subcritical”
pomeron, as it has been discussed in [3,4,27] (see also [28]
where a prescription for the renormalization of the super-
critical (with α(0)P > 1) pomeron was proposed).

Before we do our estimate, it is useful to recall the
non-perturbative renormalization caused by the pion loop
insertion. For a single pion loop inside the pomeron (at
t = 0) we have a formula quite analogous to (62). Instead
of Y1, Y2, convenient variables are the size of the loop ∆Y ,
the position of the center of the loop Yc = (Y −Y1+Y2)/2.
Inside the pion loop we have the transverse momentum kt

of the pion. Let us fix, for a moment, the value of Yc and
calculate the pion loop contribution ∆π:

∆π =
3g2

π

16π3

∫
d(∆Y )dk2

t

[k2
0e

−∆Y ]2

[k2
t +m2

π + k2
0e−∆Y ]2

≈ 3g2
πk

2
0

16π3

∫
d(∆Y )e−∆Y ∼ 0.1. (65)

Here the first factor 3 results from the contributions of
π+, π0 and π−. For the numerical estimate we neglect
the pion mass mπ, put the pomeron–pion coupling square
g2

π = σππ(s0) ∼ 20 mb and choose the mean transverse
momentum of the first particle inside the pomeron–pion
vertex k0 ∼ 0.6 GeV. One needs this particle also to fix
the rapidity of the vertex Y1 (or Y2). The integral over ∆Y
(65) is convergent, and for ∆Y 
 Y the integration over
Yc gives a factor Y . As a result, the one-loop correction to
the amplitude is equal to Y ·∆π. Inserting two pion loops
we obtain (1/2)(Y ·∆π)2, and summing over an arbitrary
of loops we get the sum exp(Y · ∆π), which means that
the pomeron intercept increases by ∆π.

Returning to the perturbative pomeron loop insertion
(62), we again choose αs = 0.3 and assume Y � ∆Y .
Dividing the amplitude (62) by the elastic forward am-
plitude (20) and considering only the integration over the
loop size, we find

∆loop =
∫

2π eχ0∆Y

[a∆Y ]3
·C2

4V

(4π)17
d(∆Y )

≈ 2.53 · 10−3 δY

[∆Y ]3
eω0∆Y . (66)

Here we have cut the integration over the loop size at δY =
∆Y . As the numerical coefficient here is extremely small,
the only possibility to obtain a relatively large renormal-
ization is to choose a very large ∆Y � 1/ω0. On the other
hand the loop renormalization ∆loop is a NNLO BFKL
effect and first we have to account for the NLO BFKL
corrections which lowers the intercept down to ω0 ∼ 1/4.
Therefore up to a very large ∆Y the loop renormalization
is still negligible; for ω0 = 0.25 the values of ∆loop and
ω0 become comparable only for ∆Y > 45 (changing the
value of ω0 to the larger value ω0 = 0.70 we are consistent
with [15,29]). Of course, from the academic point of view
we have to account for this renormalization effect, when

s → ∞; but at any reachable rapidity interval the value
of ∆loop is much less than ω0.

Since the numerical value of the triple-pomeron cou-
pling is not far from the non-perturbative one, it is not
surprising to see that the estimate (66) is also consistent
with the non-perturbative evaluation. In the latter case
we expect

∆loop
n.p. ∼ g2

3P

16π3

∫
d(∆Y )dk2

t eω0∆Y ≈ 2 · 10−3δY eω0∆Y

(67)
for g3P ∼ 1 GeV−1 and k2

t ∼ 1 GeV2.
Finally we mention that the estimate in (66) may still

be a bit too large. Namely, recall that in our calculation
of the pomeron self-energy and in our numerical estimate
of its magnitude we have restricted ourselves to the for-
ward direction, and that we have considered the values
lα = l′α = 0. As discussed before, this is the point where
the perturbative nature of the BFKL approximation be-
comes most visible, i.e. the “distance” between pQCD and
non-perturbative QCD is the largest. The mathematical
manifestation is the 1/ν-singularity, which immediately
disappears if we depart from lα = 0. Therefore, as for the
discussion of the numerical value of the triple-pomeron
coupling, we expect that also our estimate of the renor-
malization due to the self-energy may be slightly overes-
timated.

6 Conclusions

In this paper we have performed an estimate of the pertur-
bative triple-pomeron vertex. Starting from the results of
a leading-ln s analysis of QCD perturbation theory in the
triple Regge limit, we have used the large-Nc limit to de-
rive a fairly simple expression for the triple Regge inclusive
cross section, which can be compared with the standard
formulae used in the analysis of experimental data. A nu-
merical estimate of the perturbative triple-pomeron cou-
pling – which has a considerable theoretical uncertainty –
indicates that its value is of the same order of magnitude
as the non-perturbative one, obtained from earlier fits to
the experimental data.

We have also tried to estimate the renormalization of
the BFKL intercept due to the pomeron self-energy loop.
Formally speaking, this is a NNLO effect and lies beyond
the NLO corrections to the BFKL kernel. A numerical es-
timate – again with theoretical uncertainties – indicates
that these corrections due to self-interactions of the BFKL
pomeron are much smaller than the non-perturbative con-
tribution (65). This is caused by the fact that this cor-
rection is proportional to the perturbative triple-pomeron
vertex square, and it agrees with the evaluation of the
pomeron loop insertion based on the phenomenological
value (63) of the triple-pomeron vertex.

So finally we conclude that in spite of the “huge num-
ber” Ω = 7767 (see (54)) the perturbative triple-pomeron
coupling is not large; it is in approximate agreement with
the old phenomenological evaluations.
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As a future step, it would be interesting to understand
better why numerical studies of the non-linear evolution
equations seem to find rather rapid saturation effects in
spite of a rather small value of the perturbative triple-
pomeron coupling.

Appendix

A Counting factors of 2 and π

In this appendix we give a brief summary of the normal-
ization of the impact factors and the triple-pomeron ver-
tex in perturbative QCD. Our starting point is (4) which
defines the impact factor. To be definite we consider the
elastic scattering of two quarks (averaged over color and
helicity of the incoming quarks). The lowest order dia-
gram with color singlet exchange has two gluons in the
t-channel (box diagram and its crossed counterpart), and
in the high energy limit one finds

ALO
el = isg4N

2
c − 1

(2Nc)2

∫
d2k

(2π)2
1

k2(q − k)2
. (68)

Comparison with (4) yields the quark impact factor

Φq = 2
√
πg2

√
N2

c − 1
2Nc

. (69)

Equivalently, we could have defined the impact factor
through the requirement that the leading order energy
discontinuity should have the form

discAel =
∫

d2k

(2π)3
Φq

1
k2(q − k)2

Φq. (70)

Next we turn to the triple Regge cross section. Equa-
tion (23) defines the M2-discontinuity of a six-point func-
tion, a6. Turning again to lowest order QCD diagrams, we
look at the diffractive process q+q → (qg)+q in the triple
Regge limit; a typical QCD diagram is shown in Fig. 5. We
define the triple-pomeron vertex through the LO equation

a6 = 2s
∫

d2q

(2π)3
d2k1

(2π)3
d2k3

(2π)3

× Φq
1

(q2)2
V (q,−q|k1, l − k1; k3, l − k3)

× 1
k2

1

1
(l − k1)2

Φq
1
k2

3

1
(l + k3)2

Φq. (71)

The analysis of the high energy behavior of the relevant
QCD diagrams leads to the result

4a6 = π3N
2
c − 1
2Nc

g10

×
∫

d2q

(2π)3
1

(q2)2
Ṽ (q,−q|k, l − k; k, l − k)

× 1
k2

1

1
(l − k1)2

1
k2

3

1
(l + k3)2

, (72)

where Ṽ stands for the BFKL-type 2 → 4 gluon vertex:

Ṽ =
(q2)2

(q − k1)2(l + k3 − q)2
− q2

(q − k1)2k2
1

− q2

(l + k3)2(l + k3 − q)2
. (73)

Inserting the result for the quark impact factor we obtain
the following normalization of the triple-pomeron vertex
V :

V =
(2Nc)2g4√
N2

c − 1
π3/2

32
Ṽ . (74)

B Impact factors
in the conformal approximation

We discuss here briefly, with simple arguments and some
approximations, the behavior of the impact factors in the
conformal representation in the forward and non-forward
direction, but without giving a full momentum and con-
formal weight dependence.

Let us consider the situation of zero conformal spin
and work in coordinate representation. One can obtain the
same results on studying the limiting case of the BFKL
pomeron eigenstate in the momentum representation.

We start from an impact factor which has some dom-
inant support in a bounded region of size of order R in
the coordinate space. We are interested in studying the
behavior of the following expression:

Φ(ν, l) =
∫

d2r1

(2π)2
d2r2

(2π)2
|r12|1+2iνΦ(r1, r2)

×
∫

d2r0

(2π)2
eir0l(|r10||r20|)−1−2iν . (75)

We are mainly interested in studying the behavior in the
small |l| region. Therefore the main contribution in (75)
will come from the integration in the region of large |r0|.
It is therefore convenient to split the integration region
according to |r0| < R and |r0| > R. We shall be inter-
ested therefore in momenta |l| < 1/R and neglect the first
contribution. We note also that in the region r0| > R
it is a good approximation to consider |ri0| ≈ |r0| for
i = 1, 2 since the external integral has support roughly for
|ri| < R/2. We can therefore write, in a factorized form,

Φ(ν, l) ≈
∫

d2r1

(2π)2
d2r2

(2π)2
|r12|1+2iνΦ(r1, r2)

×
∫

|r0|>R

d2r0

(2π)2
eir0l(|r0|2)−1−2iν

= φν g(ν, l) (76)

and study the l-dependence in g(ν, l). The r0 integration
gives

g(ν, l) = πR−4iν 1
2iν

(
1F2

(
−2iν, 1, 1 − 2iν; −R2l2

4

)
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− Γ (1 − 2iν)
Γ (1 + 2iν)

(
R2l2

4

)2iν)

= πR−4iν

{
1

2iν

[
1 −

(
R2l2

4

)2iν]
+
R2l2

4

}

+ O(ν) +O

((
R2l2

4

)2)
. (77)

One can see that in the forward direction l = 0 the
second term does not give a contribution and therefore
g(ν, l) ∼ 1/(2iν). This leads in fact to the correct behavior
of the BFKL pomeron Green’s function in the forward di-
rection, where under the ν integration the integrand is not
proportional to ν2, as, instead, in the non-forward case.
To analyze the limit of small lR2 → 0 one can keep the
term (R2l2)2iν/(2iν) and estimate with the saddle point
method its contribution in such a limit. Again one can
easily check that such a contribution is suppressed. For
l �= 0 there is instead a cancellation of the ν pole in the
origin. Therefore we can write

Φ(ν,0) ≈ 1
iν
Φ0F,

Φ(ν, l) ≈ Φ0NF, s � l2 > 0. (78)

We shall be interested typically, for the non-forward
case, in values of R|l| ∼ 1, at the border of the approxi-
mations taken above to show the behavior in (78).
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